Using Machine Learning techniques in phenomenological studies on flavour physics

نویسندگان

چکیده

A bstract An updated analysis of New Physics violating Lepton Flavour Universality, by using the Standard Model Effective Field Lagrangian with semileptonic dimension six operators at Λ = 1 TeV is presented. We perform a global fit, discussing relevance mixing in first generation. use for time this context Montecarlo to extract confidence intervals and correlations between observables. Our results show that machine learning, made jointly SHAP values, constitute suitable strategy kind analysis.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

using game theory techniques in self-organizing maps training

شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...

A Review of Studies on Machine Learning Techniques

This paper provides an extensive review of studies related to expert estimation of software development using Machine-Learning Techniques (MLT). Machine learning in this new era, is demonstrating the promise of producing consistently accurate estimates. Machine learning system effectively “learns” how to estimate from training set of completed projects. The main goal and contribution of the rev...

متن کامل

Preventing Student Dropout in Distance Learning Using Machine Learning Techniques

Student dropout occurs quite often in universities providing distance education. The scope of this research is to study whether the usage of machine learning techniques can be useful in dealing with this problem. Subsequently, an attempt was made to identifying the most appropriate learning algorithm for the prediction of students' dropout. A number of experiments have taken place with data pro...

متن کامل

Predicting Students' Performance In Distance Learning Using Machine Learning Techniques

The ability to predict a student’s performance could be useful in a great number of different ways associated with university-level distance learning. Students’ key demographic characteristics and their marks on a few written assignments can constitute the training set for a supervised machine learning algorithm. The learning algorithm could then be able to predict the performance of new studen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of High Energy Physics

سال: 2022

ISSN: ['1127-2236', '1126-6708', '1029-8479']

DOI: https://doi.org/10.1007/jhep07(2022)115